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Background: Transcriptional regulation is primarily mediated by the binding of factors to non-coding regions in
DNA. Identification of these binding regions enhances understanding of tissue formation and potentially facilitates
the development of gene therapies. However, successful identification of binding regions is made difficult by the lack

Results: We extend an alignment-based method, changept, and identify clusters of biological significance,
through ontology and de novo motif analysis. Further, we apply a Bayesian method to estimate and combine binary
classifiers on the clusters we identify to produce a better performing composite.

Conclusions: The analysis we describe provides a computational method for identification of conserved binding
sites in the human genome and facilitates an alternative interrogation of combinations of existing data sets with
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Background
At the transcriptional level, gene expression is largely
mediated through the binding of proteins to non-coding
regions in deoxyriboucleic acid (DNA). This is achieved
by directly stabilising or blocking the binding of riboucleic
acid (RNA) polymerase, or by interacting with other pro-
teins and co-factors capable of influencing transcription
[1]. These transcription factors (TFs) binding to cis-
regulatory elements (CREs) are responsible for initiating,
modulating and terminating transcription.

CREs are often in neighbouring non-coding regions of
target genes and can consist of multiple sites at which
TFs can bind. Such binding sites are typically short (6-30
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base pairs) degenerate sequences and are often located in
promoter regions within a few kilobases (kb) either side
of the transcription start sites (TSSs) of target genes [2].
However, the regulatory landscape is not limited to the
immediate vicinity of a gene. Some TFs depart from the
common pattern of binding near TSSs; for example, in
mouse embryonic stem cells, the TF Smad1 has more than
86% of its binding sites at a distance greater than 5 kb
from the TSS of any gene, and in fact its binding sites are
depleted near TSSs [3-5]. Classes of more distal binding
regions known as cis-regulatory modules (CRMs) com-
prised of different CREs have also been identified to play
important roles in transcriptional regulation [6]. Projects
involving the mapping of the human regulatory genome
have revealed that TFBSs are more widely distributed,
even being located hundreds of kb away from the nearest
gene [7—10]. Thus, the location of TFs in relation to the
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regulatory domain of their target genes is likely variable
per gene.

Varying genomic factors such as sequence specificity,
chromatin accessibility, protein-protein interactions, epi-
genetic modifications to the DNA and histone structure
contribute to TF binding to their target sites [11-13]. The
reorganisation of these chromatin structures allows for
variability in transcriptional states and subsequent expres-
sion patterns [14, 15]. Factors such as these can vary
through the life-cycle of a cell, allowing for the expression
of different profiles required of a cell to proceed down a
particular developmental pathway or to carry out specific
functions.

We proceed by using a Bayesian segmentation-
classification algorithm changept rooted in comparative
genomics. This algorithm has been previously success-
ful in the identification of conserved non-coding regions
[16]. In summary, this method delineates an alignment
and classifies segments according to their structure within
the alignment. In this paper, we extend previous meth-
ods to a genomic scale by clustering segments obtained
from individual chromosomes. We then investigate these
clusters for putative functional elements (PFEs), contained
within the identified segments, through ontology anal-
ysis and enrichment for binding motifs. We also use
a method for comparing and combining binary clas-
sifiers that assess the functional relevance of genomic
regions based on the presence of certain genetic markers.
The resulting combined classifier has improved sensitiv-
ity and specificity relative to its constituent classifiers.
We find that combinations that use markers based on
chromatin immuno-precipitation followed by sequencing
(ChIP-Seq) and DNase Hypersensitivity (DHS) outper-
form those that do not, possibly indicating the presence
of enhancers within these clusters. Lastly, we find that
changept is able to identify clusters that are enriched
in different ontology terms and statistically significant
motifs, which together hint at the shared biological func-
tion of the segments withing a cluster.

Results

The downloaded alignments were partitioned by zebrafish
chromosome to give 25 smaller alignments for encoding.
Alignments of zebrafish, mouse and human sequences
were obtained by removing the other five species from the
8-way alignment and discarding any alignment blocks that
did not contain all three species of interest, resulting in
3-way alignments that were encoded.

Clustering

The silhouette method for model selection identified 16
clusters by applying k-means clustering on the segment
class character frequencies. Approximately 89% of the
variation between the segment classes was captured by
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the first two principal components with the largest load-
ings attributed to the characters v and a, respectively.
This is of note since these are the characters correspond-
ing to completely conserved bases within the alignment.
These clusters are available in genetic (hg19) coordinates
in .bed format via the cluster beds folder in figshare link
in the data availability section.

We also identified 422 segments overlapping with
known conserved non-coding regions presented by
Babarinde and Saitou [17]. The majority of these segments
were located in clusters 4 (248), 7 (76) and 12 (69): clus-
ters with high conservation levels (see Table 1). However,
clusters with lower conservation levels, such as clusters 13
and 14, also contained segments overlapping with known
conserved non-coding regions.

Estimating the performance of individual classifiers

Performance estimates for the four binary classifiers are
visualised in Fig. 1 and also available in the figshre project
under the Classifier estimates folder. We observe that,
as individual classifiers for a segment containing a PFE,
DHS and ChIP-Seq outperform GC content and conser-
vation level using the thresholds that we have set. This
can be seen in the tighter grouping and more consis-
tent specificity in the scatter plots for DHS and ChIP-Seq.
Conservation and GC content, considered as individual
binary classifiers, performed inconsistently across clus-
ters. In the case of both of these, a high sensitivity was
usually accompanied by low specificity and vice versa.

Table 1 Summary statistics for segments identified in clusters

Cluster M, Mg My n

1 21 1437 641 0494
2 28 2804 2646 0.321
3 27 8439 3973 0.722
4 24 1714 1263 0.745
5 29 1590 1144 0.388
6 10 102 88 0320
7 14 725 562 0.556
8 18 1361 610 0572
9 25 819 655 0.246
10 14 2340 1127 0.594
11 28 2297 1181 0.522
12 28 9083 4219 0.695
13 24 506 460 0.261
14 22 702 643 0.342
15 28 2329 1341 0422
16 22 103 94 0.380

Here M. is the number of segment classes, Ms is the number of segments, M is the
number of segments not overlapping with UCSC exons, 1 is the average
conservation level of non-exonic segments
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Fig. 1 Sensitivity and specificity estimates. The estimated performance of each of the four binary classifiers under the model for each cluster. (A)
ChiP-Seq. (B) Conservation level. (C) Dnase-Seq. (D) GC content

The varied performance across the clusters could mean
that neither conservation nor GC content would be suit-
able for use as the only classifier in an analysis seeking to
identify regions containing PFEs, in contrast to the more
consistent performance of DHS and ChIP-Seq, which are
features typically used in functional element discovery.
A reciever operating characteristic curve containing the
aread under the curve values for the GC classifier used on
the clusters presented in the discussion section is available
in Additional file 1.

Identifying the optimal combination of classifiers

For each cluster, we also investigated ways of creating a
composite classifier with improved performance relative
to individual classifiers (for the purpose of identifying seg-
ments that contained conserved non-coding functional
elements). Through this process, we identified five differ-
ent combinations of classifiers deemed optimal in at least
one cluster according to our selection criteria. The perfor-
mance of these combinations is visualised in Fig. 2 and are
also available under the Classifier combinations directory

of the figshare project. We observe that for the major-
ity of clusters, the top ranking combination identified was
simply the union of DHS and ChIP-Seq. This particular
combination is consistent with studies using a combina-
tion of these two types of data to characterise functional
regulatory elements and identify novel putative elements
[18, 19]. For a segment to be classified with a ‘1’ using this
composite classifier, it would have to have a ‘1’ classifica-
tion for at least one of the individual DHS or ChIP-Seq
classifiers, regardless of classifications obtained using the
GC content or conservation.

Classifiers that were composed of positive classifica-
tions for either ChIP-Seq or DHS tended to perform better
than those that did not include them. From a biologi-
cal perspective, these two data types come from experi-
mental and verified data collection. On the other hand,
the GC content and conservation classifiers as we have
defined them are synthesised from a sequence alignment.
However, there were two clusters that identified optimal
combinations which included the GC and conservation
classifiers.
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Fig. 2 Sensitivity and specificity estimates for combinations. Clusters identified different combinations as optimal under our selection criteria. (A)
Union of DNase-Seq, ChIP-Seq and GC content. (B) Union of Dnase-Seq and ChiP-Seq. (C) DNase-Seq. (D) ChIP-Seq (E) At least two of DNase-Seq,
ChIP-Seq or conservation level

In clusters 7 and 16, the optimal combined classifier
included conservation and GC content, respectively. The
identified combination in cluster 16 included the union
of having above threshold GC content with the union of
DHS and ChIP-Seq as the best performing. This classifier
would classify a segment as a putative functional element
if it had a positive result in at least one of DHS, ChIP-Seq
or GC content. The composite classifier identified in clus-
ter 7 selects regions that have a positive result in at least
two of DHS, ChIP-Seq or above threshold conservation.

In most cases, the composite classifier identified for
each of the clusters results in an increase in both the sen-
sitivity and specificity compared to each of the individual
constituent classifiers. However, we do observe that for
some clusters, the identified optimal combination of clas-
sifiers may have reduced sensitivity or specificity when
compared to an individual classifier. For example, in clus-
ters 7, 8 and 12, conservation as an individual classifier
had very high sensitivity but low specificity. Theoreti-
cally, a classifier with a sensitivity of 1 is able to correctly
identify a true positive all the time. However when this
is combined with a low specificity, as in the case with
the conservation classifier for these clusters, this classi-
fier fails at identifying any true negatives. In these cases,
the composite classifiers produce a drop in sensitivity but
gains in specificity. This translates to a drop in the rate
of true positives but an increase in true negatives, thus

making the identified combination a better performing
classifier overall.

Ontology and motif analysis
We next investigated whether the clusters of regulatory
elements identified by changept relate to known biolog-
ical functional groups. For this, human genomic coordi-
nates of the segments in each cluster were analysed for
enrichment of ontology terms using the genomic regions
enrichment of annotations tool (GREAT) platform with
standard association rules [20] (Table 2). The full outputs
for each cluster can be found in the figshare project. In
cases where clusters had association with ontology terms
presented by GREAT, the most commonly enriched ontol-
ogy type in the clusters were biological process terms
(173), which describe genetically programmed objectives
that organisms are seeking to achieve. This was followed
by molecular function terms (9) describing tasks or activ-
ities of gene products rather than components or end
products, and finally cellular component (5), which refers
to the structures and bio-molecules that make up a cell.
Examination of the different ontology terms and associ-
ated genes present in each cluster revealed that there was
variation across clusters, being aligned with different bio-
logical systems or processes. It is important to note that
not all clusters showed an enrichment in specific anno-
tation categories. In our analysis, we find that 12 out of
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Table 2 The number of gene ontology (GO) terms and mouse phenotypes with knock out (KO) identified for each cluster

Cluster

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GO Biological Process 10 2 17 69 4 - 12 - 3 22 27 - 2 5 -
GO Cellular Component - - - - 1 - 2 - - 1 - - 1 - -
GO Molecular Function - - 1 4 - - - - 1 1 - - - 1 1 -
Mouse Phenotype Single KO - 2 16 136 - - 6 - - 2 3 13 - 3 - -
Motifs identified 1 2 1 2 1 - - - 2 - - 1 1 1 - -

the 16 clusters identified showed enrichment for ontology
terms, suggesting that there is some shared function of
the segment regions in each cluster. In cases where there
was no enrichment for ontology terms, this may reflect the
potential for changept to detect clusters of shared, but
as yet unknown, biological function.

To further investigate whether the clusters of segments
that our method had created were of biological signifi-
cance, de novo motif analysts was performed with Trawler
in order to identify shared DNA binding motifs within
each segment. The analysis undertaken with Trawler
revealed that some of these clusters are also enriched
for motifs. We find that 9 out of 16 clusters show an
enrichment for statistically significant motifs, with three
of the 9 showing enrichment for more than one motif.
The presence of these motifs may suggest the regions in
a cluster co-regulate multiple genes. Alongside the graphs
described above are motifs of TFBS that have been iden-
tified by Trawler to be present among the segments of
that cluster accompanied by a sample of some of the genes
that may be associated with those particular motifs. Just as
with the ontology terms, all the motifs identified for each
cluster are available in the relevant folder in the figshare
project.

Discussion

In the following section, we discuss some possible bio-
logical functions for several of the clusters identified in
the analysis. Given that all the terms within a cluster are
statistically significant for the 0.05 false discovery rate
threshold, a graph of the most frequent words for each
ontology type is created to summarise the terms that are
observed in each cluster for the tissue, system or pro-
cess terms associated with a cluster. Together with the
motifs identified through de novo motif analysis with
Trawler, we demonstrate that the clusters that are pre-
dicted through this method are enriched for biological
pathways which share common motifs. The motifs are also
presented for the relevant clusters, along with predicted
TEBS, as we further investigate the biological significance
of these enrichments.

Known regulatory element features are retrievable by
changept

It is well-known that developmental genes, in particular
transcription factors and genes associated with neuronal
functions, are regulated by highly conserved enhancers
[21, 22]. In accordance with this, we have identified 2
clusters (Clusters 4, 15) in which segments identified
via changept were found to be associated with genes
with DNA-binding and neuronal function as identified by
GREAT.

The gene ontology (GO) terms for DNA-binding
transcription repressor activity, RNA polymerase II-
specific (GO:0001227) as well as high mobility group
box domain binding (GO:0071837) molecular function
terms were enriched in cluster 4 (Fig. 3A). DNA bind-
ing (GO:0003677) was also enriched within cluster 15. A
number of segments present in cluster 15 were also shown
to be in the regulatory domains for a number of genes in
the zinc finger (ZNF) TF family. It has been established
that these elements are commonly associated with protein
binding and assisting in developmental regulation [23, 24].
Newer evidence suggests that ZNFs display flexible bind-
ing characteristics, also binding to RNA, lipids and post
translational modifications and playing broader biological
roles such as protecting genome integrity and telomere
maintenance [25].

Regions in both clusters fell in to the regulatory domains
for several genes in the Pit, Oct, and Unc (POU) family
of transcription factors; POU3F2, POU3F3, POU4F2 and
POUSFI1B. This particular family of genes plays various
regulatory roles in development, metabolism and immu-
nity and this range is observable across the specific exam-
ples we encounter. Cluster 4 was enriched for numer-
ous biological process terms associated with neuronal
development such as regulation of neural retina devel-
opment and cell proliferation in forebrain (GO:0061074,
G0:0021846) (Fig. 3B) These ontology terms show associ-
ations with POU3F3 and POU4F2, known for regulatory
roles in neuronal and other tissues. In the case of POU3F3,
it has been found to be a regulatory component for cor-
tical neuron migration in the development of the brain
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[26]. While POU4F2 has been linked to neural retina
development, it has also been linked to adaptive hyper-
trophic responses in hearts [27]. Further illustrating the
range of systems that the POU family play roles in we have
POUS5F1B, associated with terms in cluster 15, which has
been found to have roles in cancer cells both in vitro and
tumours in vivo [28, 29].

de novo motif discovery performed by Trawler on
sequences in Cluster 4 revealed two statistically signifi-
cantly enriched motifs (Fig. 3C-D) Putative transcription
factors known to be associated with these motifs include
members of the Homeobox and the POU family of tran-
scription factors (Fig. 3C-D). Interestingly, Cluster 4 con-
tains segments that were associated by GREAT to genes
belonging to these specific transcription factor families
(e.g. paired box 7 (PAX7), POU3F2) This implies that
these transcription factors regulate their own expression
by binding to their own regulatory region. This is con-
sistent with current knowledge about these transcription
factor families that are known to self regulate [30].

Altogether, this demonstrates that changept is able to
retrieve clusters that represent known biological groups of
genes such as developmental genes which are co-regulated
by common TFBSs under high evolutionary constraint.

Change-point identifies synexpression groups

Our analysis further identified examples of clusters show-
ing enrichment in only one type of gene ontology; the
GO biological processes. The absence of enrichment in

the cellular component GO category suggests that genes
belonging to these clusters do not originate from a partic-
ular location in the cell. Similarly, the absence of enrich-
ment in the molecular function GO category suggests that
genes belonging to this cluster encode for different classes
of proteins. Altogether, we propose that these clusters
represent synexpression groups. Indeed, synexpression
groups are characterised by a group of genes that are not
molecularly related but act synergetically to ensure that a
specific functional program is achieved [31] by the shared
regulation of the genes belonging to this group [32].

For instance, the most significantly enriched terms in
Cluster 1 are for the development of muscle organ and
structure (GO:0007517, GO:0061061) This is followed
by various terms, among which are the regulation of
endothelial cells (GO:0010594, GO:0010595) An overview
of terms associated with this cluster can be seen in Fig. 4A.
Genes associated with these terms, such as Wnt3a, have
been shown to increase fibrosis in muscle cells [33]. Other
genes, for example Sox6, have been linked to structural
changes in skeletal-muscular cells of mice [34] or delayed
muscle regeneration in zebrafish [35]. Further, de novo
motif discovery with Trawler identified a motif which was
a known binding site for a range of TFs known to be devel-
opmental regulators of different muscle tissues (Fig. 4B).
The TFs identified to bind to this motif include fork-
head box C1 (FOXC1), which plays critical roles in early
cardiogenesis [36] and LIM homebox 1B which regulates
the development of ocular muscles [37]. Altogether, these
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data support that Cluster 1 represents a synexpression
group dedicated for muscle function. The enriched bio-
logical process GO terms in Cluster 12 relate to cell cycle
regulation. There are terms for regulation of cell divi-
sion (GO:0051302), the establishment and maintenance
of cell polarity (GO:0030010, GO:0007163) as well as for
the establishment and localisation of spindle apparatus
(GO:0000132, GO:0040001, GO:0051294, GO:0051293)
(Fig. 4C) CDK5RAP2 was found to be associated with a
number of the terms. The protein encoded by this gene
is present during mitosis, localised in the spindle poles
and it has been found that this gene is essential for cell
proliferation in the cerebral cortex [38]. Mutations in this
gene have also been clinically observed to induce micro-

cephaly and sensorineural hearing loss in humans [39, 40].
Interestingly, the mouse phenotype terms showed links to
various types of abnormal physiology, particularly in the
brain, adding support for association of this cluster with
brain structures. De novo motif discovery with Trawler
also revealed an enriched motif that is a known binding
target for GATA3 and GATAG6 (Fig. 4D): TFs implicated
in the regulation of the cellular cycle. Irregular levels of
these TFs play a role in different cancers [41, 42]. We
also identify several segments that fall within the regu-
latory regions for cyclin D1, which is a known target of
GATA3 in tumour cells [43]. Altogether, these findings
suggest Cluster 12 is a synexpression group dedicated for
the regulation of the cell cycle in brain structures.
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Change-point identifies co-regulated genes belonging to
distinct subcellular units

In this analysis, the cellular component ontology term
was present in the least number of clusters, however
some clusters do show enrichment in particular cellu-
lar substructures, suggesting that genes implicated in
the formation of these cellular substructures share com-
mon regulation. For instance, the sarcomere is a cel-
lular component usually associated with muscle tissue,
giving these cells a striated formation, particularly in
the heart; terms relevant to the sarcomere were identi-
fied in conjunction with terms for biological processes
(Fig. 5A). Defects in sarcomeric proteins are the pri-
mary attributes of hypertrophic cardiomyopathy. How-
ever, modern analysis is revealing that the heterogene-
ity in hypertrophic cardiomyopathy may be attributed
to defects in secondary genes like cysteine and glycine
rich protein 3 (CSRP3) [44, 45]. Our analysis produced
segments within Cluster 5 that were associated with sar-
comeric genes (including CSRP3), leading to the enrich-
ment of the sarcomere term (GO:0030017) for cellular
components (Fig. 5B) In accordance with this function,
the motif identified in this cluster was also a known motif
bound by FOXCI1, which is a crucial transcription for
heart development and is known to be essential for car-
diomyocyte formation (Fig. 5C) Cluster 7 also presented
cellular components for growth cone (GO:0030426) and
sites of polarised growth (GO:00300427) These terms are
closely linked to neuronal cells’ ability to grow in a par-
ticular direction, in search of axonal targets. Segments in
this cluster showed association to the regulatory domains
of fibronectin leucine rich transmembrane (FLRT) and
ELKS/RABG6-Interacting/CAST family member 2 (ERC2).
Both these genes have been observed to affect aspects
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of neuronal features within model organisms. In partic-
ular, there have been links to decreased synaptic activity
in FLRT knock out mice as well as decreased neuro-
transmistter release and synaptic transmission in down
regulated ERC2 mice [46, 47].

Altogether, this data indicates that changept is able
to identify clusters of genes sharing a common cellular
location. These might represent subsets of synexpression
groups as evidenced by the enriched motif in Cluster 5.

Validity of results

Trawler identifies statistically significant motifs present
within the clusters or regions that we determine through
the changept analysis and additionally matches PWMs
of these motifs against databases of TFBS, such as JAS-
PAR. These databases make use of a variety of data types,
sourced from multiple protocols such as SELEX and ChIP-
Seq. Hence, the motifs that are presented by Trawler, and
present within our clusters, can theoretically be recog-
nized by the suggested TFs. Additionally, approximately
20% of the regions identified through this analysis over-
lap when compared to the phylogenically conserved TFBS
track on UCSC. However, the claim that novel puta-
tive functional elements can be identified via changept
analysis requires additional validation.

To validate the regions identified by this analysis, we
compared the regions that contained a predicted TFBS
from Trawler against the Encode regulatory TFBS track
available on UCSC. These tracks represent known bind-
ing locations of TFs. The comparison is carried out by
comparing regions harbouring predicted TFBSs that are
present in the cluster under consideration with the UCSC
TEBS tracks. This then allows us to identify overlaps with
the Encode track and determine a list of TFs that are
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known to bind within the segments in the clusters. We
identify that there is an overlap in a subset of the predicted
TFs from Trawler and the TFs from the Encode track. Out
of the 4 clusters investigated which had predicted TFBS,
we found an occurrence of the predicted TFBS that was
overlapping with an existing TFBS from the UCSC track in
3 of these clusters. Hence, we assert that the regions iden-
tified by changept in this analysis must have biological
significance in the form of regulatory potential.

Conclusion

We have presented a comparative, alignment based
approach to identify clusters of conserved putative func-
tional elements using the program changept. This
method was demonstrated in this paper using a 3-way
zebrafish-referenced alignment, but similar analysis can
be carried out with the substitution of any 3-way align-
ment. This method can be performed on 2-way align-
ments and extended to 4-way alignments, given a suitable
choice of alignment encoding. Clusters that were identi-
fied in this analysis through their representative structure
by changept differ in biological significance and func-
tion, and are associated with different tissues or processes
elucidated through gene ontology analysis.

Novel functional element discovery can be a costly and
time consuming process partially due to the nature of
investment required in assets such as reagents and cell
lines as well as experimental design. While large volumes
of ChIP-Seq data continue to be generated, new functional
elements being discovered rely on some level of apriori
knowledge for the design of the experiment to find the
appropriate targets. The advantage of this approach is that
it does not require any apriori assumptions, although such
assumptions can be incorporated if desired. Other than
some knowledge based on a multiple sequence alignment,
our approach can identify significant regions of poten-
tial function and this may open the door to the discovery
of functional elements that may not otherwise be found
using traditional means.

The method as we describe it is illustrative of the way
that such analysis of this nature can be performed. How-
ever, it provides sufficient scope to tailor the analysis
being performed to more targeted classes of cis-regulatory
elements. This can be done, for example, by using a dif-
ferent alignment where promoters are more prominently
conserved and using classifiers that are more strongly
correlated to the type of element of interest. Alternative
clustering approaches could be incorporated to discern
the functional segments identified for specific tissues or
processes according to the relevant metric.

Further, we have demonstrated a method for estimat-
ing the sensitivity and specificity of binary classifiers for
putative functional element discovery. We have used these
estimates to identify composite binary classifiers with
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improved performance over their constituent classifiers.
We observe that classifiers based on DHS and ChIP-Seq
outperform those based on GC content and conservation
level, as we have defined them, as stand-alone classifiers.
Analysis of all combinations of binary classifiers revealed
that the best combination available was typically the union
of DHS and ChIP-Seq and that the composite classifier
formed from the union of these also performed well.

Our analysis suggests that regions enriched with both
DHS and ChIP-Seq are potential candidates for TFBS.
This is consistent with the literature identifying these
two features being common among regulatory elements
such as promoters and enhancers [48, 49]. However,
this combination of enrichment may still result in mis-
identification of non-coding functional elements as they
may indeed be binding sites but for proteins that do not
play a regulatory role in gene expression. Optimal com-
binations of classifiers identified in this study tended to
exclude classifiers based on GC content and conserva-
tion level, suggesting these classifiers are not contributing
useful information in this context. Currently, the number
of classifiers for which the optimal combination can be
identified is limited to four or five by computational con-
straints, but in current work we are attempting to increase
this number.

Methods

Alignment of data

We extend the analysis from the previous work of
Algama [16] and proceed by using the same dataset. A
zebrafish referenced multiz 8-way alignment in .maf for-
mat was obtained from the University California Santa
Cruz (UCSC) genome browser at http://hgdownload-test.
cse.ucsc.edu/goldenPath/danRer7/multiz8way/ and split
into 25 data sets corresponding to zebrafish chromo-
somes, where alignment blocks that overlapped with Ref-
Seq genes were removed. These were then uploaded to
the galaxy platform (usegalaxy.org) to extract 3-
way alignments containing zebrafish (danRer7), mouse
(mm9) and human (hg19) sequences and to ensure that all
alignment blocks contained no less than 7 columns [50,
51]. From the point of view of the human genome, the
regions under consideration are the subset of sequences
found in intronic, intergenic and promoter regions
that are mappable to the other organisms within the
alignment.

Alignment encoding

The minimum input required for changept is a binary
sequence. However, for this application a, 3-way align-
ment was converted into a single sequence using a 32-
character code (see below). Any alignment columns con-
taining indel characters, represented by a ‘- were encoded
with special characters and ignored within the analysis;
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characters on either side of an indel were considered to be
adjacent. The encoding is summarised as,

Zebrafish: ACGTACGTACGTACGTACGTACGTACGTACGT

Mouse: AAAACCCCGGGGTTTTAAAACCCCGGGGTTTT
Human: AAAAAAAAAAAAAAAACCCCCCCCCeeeececee
Symbol : abcdefghijklmnopgrstuvwxyzUVWXYZ

Alignment columns with a G or T in the human
sequence were complemented and then encoded using
the same characters. Non-contiguous alignment blocks
were separated using the # symbol; these are considered
as fixed change-points by the model. This encoding was
chosen as it encapsulates information about the three
sequences, such as alignment structure, guanine-cytosine
(GC) content and conservation.

Change-point analysis

Overview

The encoded sequences generated from each of the align-
ments corresponding to zebrafish chromosomes were
independently run through program changept to per-
form segmentations. A full description of the model can
be found in previous papers [52—54].

Briefly, changept 1is a Bayesian segmentation-
classification algorithm. The input for the algorithm
is a single sequence. For our purposes, we used the
32-character code described above. The algorithm then
iteratively produces a segmentation, delineating the
input sequence S by finding the change-point positions,
represented by a vector C. Segments are then allocated
into one of T segment classes, with the vector g, where
gi € {0,..., T — 1}, used to assign membership of each
segment to a class. The character frequency of a segments
in a class is modelled by a multinomial distribution with
parameter 6 = (0,,...,0,,0,...,02) which is drawn
from one of T dirichlet distributions with parameter
vector «. The number of segment classes in a model
is unknown a priori and is determined through model
selection.

The Generalized Gibbs Sampler [52] was used to gen-
erate samples from the varying-dimensional space, since
parameters such as the number of change points K are
also unknown. Upon completion, the algorithm produces
posterior probability estimates of the locations of segment
boundaries and posterior probabilities of each position in
the sequence being assigned to a segment class. These
probabilities were obtained using the program readcp
(part of the changept suite) and an overview of the
conditional relationships between the parameters of the
model can found in Fig. 6.

Tuning and model selection
Tuning and model selection was required in order to
determine the number of segment classes T in the model.
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Independent runs with different values of T were per-
formed and used to determine the optimal number of
classes for each alignment, using approximations to the
Aikake and bayesian information criterions, and a variant
of the deviance information criterion utilizing variance,
all calculated for post burn-in samples. Discussed in Old-
meadow and Keith [55], the robustness of this criteria
was demonstrated in Bayesian segmentation classifica-
tion algorithms in multiple circumstances. Models with
the lowest values of these information criteria are gener-
ally preferred, as they represent a compromise between
model fit and the effective number of parameters. In com-
bination with this method, the model selection procedure
outlined previously by Algama et al. [56] was used. In this
approach, a model containing segment classes with very
low mixture proportions (< 0.5%) was considered over-
fitted and discarded in favour of models with a smaller
number of classes.

Due to the probabilistic nature of the algorithm and
its reliance on posterior distribution samples obtained via
Markov chain Monte Carlo, it was necessary to estab-
lish whether convergence to the limiting distribution had
occurred. This was done by inspecting trace plots of
the log-likelihood for each of the iterations as well as
for parameter estimates to identify the burn-in period,
which was characterised by an upward trend in the log-
likelihood. For the following analysis, only samples taken
after burn-in were used. The steps of this workflow are
summarised in Appendix Fig. 1 (located in Appendix A)
in a flow diagram. However, a complete description of the
changept and readcp programs can be found in [57].

Segment retrieval

For each dataset, the readcp output was used to iden-
tify segments for further analysis after segmentation with
changept. Only segments satisfying the following crite-
ria were considered for further analysis:

minimum segment length - 6 nt

minimum profile value - 75%

maximum gap size in a segment - 3 nt
maximum proportion of gaps in a segment - 50%

As we are seeking PFEs, the first criterion reflects a
minimum size for an individual site of a TFBS [58, 59].
The other criteria are related to technical considerations
that arise when using changept. Segment assignment to
classes is probabilistic, and requiring segments to have a
high probability of belonging to a specific segment class
is thus recommended to avoid false positive allocations;
we therefore prescribed a minimum profile value of 75%.
changept considers characters on either side of a gap
to be adjacent, so a segment containing long gaps or a
large proportion of gaps may not be indicative of real
genomic structure. These criteria were a slight modifi-



Maderazo et al. BMC Genomics (2022) 23:78

Page 11 of 16

Fig. 6 Conditional dependence diagram. The parameters for the changept model. Parameters at the head of an arrow are conditionally
dependent on the parameters at the tail. The parameter ¢ governs the probability of a change point at a position and the parameter 7 is a
probability vector that governs the segment allocation to a class membership, also known as the mixture proportion

cation of those used previously by Algama et al. [16],
where changpt was used to identify conserved non-
coding regions. We have opted for a more relaxed value
of minimum segment length and profile value to allow
for more potential candidates for conserved non-coding
regions and a more aggressive criteria for the gap size to
compensate.

Clustering

Within a data set, segments were classed and charac-
terised by the frequencies of characters obtained from the
encoded representation of the segment. Up to this point in
the analyses, the data sets were treated independently, but
from here the segment classes across the data sets are clus-
tered to identify correspondence between data sets and
pool clusters from different segmentations. The character
frequencies for each of the different segment classes are all
collected into a single .csv file in the Character frequencies
folder of this figshare project.

The segment classes were clustered by assigning the
proportion of a character frequency as a dimension in
Euclidian space and then using a standard k-means clus-
tering algorithm. Model selection was done using the
silhouette method [60]. Segment classes identified to be
in the same clusters had their representative segments
grouped together and any segments found to overlap
with UCSC exons were excluded for the remainder of the
analysis.

Evaluating and combining classifiers

Classifier data

In the 32-character representation used to encode the 3-
way alignments, characters a and v represent the bases
across all three species are conserved in an alignment col-
umn, while the characters g through to Z represent the
GC content in the human species. The conservation and
GC content of a segment is defined to be the proportion
of characters in the encoded sequence corresponding to
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the feature of interest and classification is carried out by
setting a threshold for these proportion. Although the GC
content and conservation can be directly computed by the
representation of the sequence using the encoded alpha-
bet, the current implementation of our algorithm requires
binary input. When classifying for GC content, a segment
is positively classified if its encoded representation is com-
prised of greater than 40% of the characters g through
Z; any segments failing this criteria are classified nega-
tively. In a similar fashion, a segment is positively clas-
sifed for conservation if greater than 40% of the encoded
representation are the characters a or v and negatively
classified otherwise.

DNase-Seq footprint data (combined.fps.gz file) were
downloaded from the European Bioinformatics Institute
and any segments that were contained within a foot-
print region were positively classified and negatively
otherwise. More technical detail about this data set can
be found at the download link ftp://ftp.ebi.ac.uk/pub/
databases/ensembl/encode/integration_data_jan2011/
byDataType/footprints/jan2011/. Lastly, 690 ChIP-Seq
data sets representing 161 unique regulatory factors, both
generic and sequence specific, from 91 human cell types
were downloaded from the Encode track at UCSC, at
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&
g=wgEncodeAwgTfbsUniform, using the union of all
these data sets as genetic coordinates. Any segments
completely contained within a region identified these
tracks were positively classified and negatively otherwise.
These classification rules were applied in the same way to
segments in each cluster and the outcomes used to esti-
mate the performance of each classifier and to construct
a composite classifier indicative of the type of element
found in each cluster.

Estimating binary classifier performance

The performance of a classifier is quantified in terms of
sensitivity and specificity. These measure the proportions
of true positive and true negative individuals (respec-
tively) that are correctly classified. They are also known
as the true positive and true negative rates, respectively.
Ideally, these rates can be estimated using a “gold stan-
dard” benchmark data set for which the true classification
of each individual is known.

When benchmark data is unavailable, alternative means
must be used to estimate these quantities. We approach
this by implementing a hierarchical Bayesian model
detailed in Keith et al. [61]. In this model, the observed
outcomes of each classifier for each segment are modelled
as independent Bernoulli trials when conditioning on the
unobserved true classification of each segment. The seg-
ments under consideration are assumed to come from a
random sample of a wider population where the feature of
interest is present in some proportion. Prior distributions
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are also assigned for the sensitivities and specificities of
each of the classifiers and the hyper-parameters for the
Bernoulli distributions in the model. Combined with the
likelihood function obtained from the observed classi-
fications, Bayes’ theorem can be employed to estimate
the parameters of interest. Additional detail regarding the
model and method is available in Appendix B.

Combining classifiers

Combinations of classifiers based on the union, inter-
section and negation operations are systematically
enumerated, as described in [61]. Under the assumption
of conditional independence between classifiers, the per-
formance of these logical combinations can be computed
easily with arithmetic arising from the definitions of
sensitivity and specificity. Description of these arithmetic
formulae can be found in Appendix C. The criteria used
to select the best combination should reflect the relative
importance assigned to sensitivity and specificity. We are
interested in an optimal combination of classifiers, in
the sense that this combination ranks highest in multiple
criteria in a probabilistic sense:

e the product of sensitivity and specificity,

e the sum of absolute value of sensitivity and specificity,
¢ the sum of squares of sensitivity and specificity,

e the minimum of sensitivity and specificity.

Each criteria can present a different combination of clas-
sifiers as optimal. A consensus method for determining
the best combination of classifiers is to select the combi-
nation that is optimal according to the greatest number of
the four criteria; ties were not observed.

Biological analysis

Ontology analysis

Clusters of segments were uploaded to the GREAT [20]
platform for ontology association using the standard asso-
ciation rules. Genes were said to be associated with
submitted regions if the region falls in a window 5kb
downstream and 10kb upstream of the transcription start
site of the gene, plus a distal extension of 1Mb in each
direction. This is defined to be the regulatory domain of
a gene. Ontology term enrichments are then computed
with a binomial test over the set of the submitted genetic
regions and gene annotations and only results achieving
the significance threshold of 0.05 false discovery rate are
reported.

Motif analysis

Finally, to identify motifs, each cluster was uploaded to
Trawler in duplicates using the standard parameters.
Trawler identifies any motifs within the uploaded regions
and tests them for significance against a random set of
genetic regions to establish significance [62—-64]. For each
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cluster, we then investigated the top three most statis-
tically significant results to identify common motifs or
cores. These motifs are presented alongside any positive
matches found by Trawler in a known TFBS database
and full.

Computing requirements
Scripts were written in python and shell, while changept
was written in C++, with additional analysis being
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performed in R. Each iteration of changept is linear
in sequence length, but how the number of iterations
required scales is unknown. In practice, we find that the
iteration scale sublinearly in sequence length.

Appendices

Appendix A - flow diagram of changept analysis

This appendix contains a flow diagram for model selec-
tion process involved in changept.

Alignment of DNA sequences

A 4

Generate changept input sequences

A 4

Run changept sequence for models
with {1, 2, ..., T'} classes

Assess convergence

Converged

Model selection

A 4

Run readcp for the selected model

h 4

Generate .bed files

Not converged

Run changept for longer

Fig. 7 Flow diagram for changept analysis. The above figure is a reproduction from Algama [56] and summarises the steps involved in the
segmentation classification portion of this analysis that is performed by changept
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Appendix B - estimation of sensitivity and specificity in the
absence of a gold standard

Suppose that there are N individuals, with K binary clas-
sifiers applied to each individual. Further, let Cg,, = 1
denote classifier k producing a positive classification for
individual #, similarly Cy,, = 0 for a negative classification.
The outcomes of these tests are modelled as independent
trials, conditional on the true classification of individual
n, Ty,. That is, the outcomes of the binary classifiers are
conditinally independent, given T},. The equation

o, Cin=1T,=1
1—or, Cpy=0,T, =1
B> Con=1T,=0
11—k Cy =0, T, =0

P(Cin| Ty, i, Br) =

describes the probability of a classification conditional on
the underlying true class membership of an individual
where o and B denote the true and false positive rates of
the classifier.

A hierarchical Bayesian model is constructed in order
to estimate the sensitivity and specificity of each of the
K classifiers, which are o and 1 — B respectively. We
assume ¢ represents the proportion of the population
that is condition positive for the feature of interest. The
N individuals selected uniformly without replacement
form a representative sample of the population, which
allows us to model T}, for the N individuals as indepen-
dent Bernoulli trials with parameter ¢. Finally, priors are
assigned to the parameters ¢, ox and S. As in the original
paper, we adopted uniform priors for these parameters.
Additionally, the restriction that o > B is also followed.

Appendix C - combining binary classifiers
The assumption of conditional independence also allows
calculation of the sensitivity and specificity of logical com-
binations of binary classifiers. These logical combinations
are constructed with the logical operators AND (A), OR
(v) and NOT (—). In the following, the variables X and YV’
are used to denote both classifiers and the set of individ-
uals classified as positive for that classifier. The sensitivity
of an intersection is given by:
SENSX AT)=PXNY|T)
=PX|T) x P(Y|T)
= SENS(X) x SENS(Y)
with specificity
SPEC(X A T) = P((X N Y)°|T°)
= P(X° U Y*|T°)
= P(XY|T) + P(Y®|T) — P(X°|T) x P(Y°|T®)
— SPEC(X) + SPEC(Y) — SPEC(X) x SPEC(Y).

Using intersections, the space of possible combinations
can be partitioned into 2X disjoint regions. Then, using
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unions of these disjoint regions, the following formulae
can be used to compute sensitivity:

SENS(X V Y) = P(X U Y|T)
= P(X|T) + P(Y|T)
= SENS(X) + SENS(Y)
and specificity:
SPEC(X V' Y) = P((X U Y)°|T®)
= P(X*NY°|T®)
= P(X|T¢) 4+ P(Y°|T) — 1
= SPEC(X) 4+ SPEC(Y) — 1.

The above two formula are sufficient to systematically

K . . . . e
evaluate all 22" possible combinations of binary classifier
outcomes.
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